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Wave scattering by narrow cracks in ice sheets
floating on water of finite depth
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School of Mathematics, University of Bristol, Bristol BS8 1TW, UK

(Received 7 August 2002 and in revised form 15 January 2003)

An explicit solution is provided for the scattering of an obliquely incident flexural-
gravity wave by a narrow straight-line crack separating two semi-infinite thin elastic
plates floating on water of finite depth. By first separating the solution into the
sum of symmetric and antisymmetric parts it is shown that a simple form for each
part can be derived in terms of a rapidly convergent infinite series multiplied by a
fundamental constant of the problem. This constant is simply determined by applying
an appropriate edge condition. Curves of reflection and transmission coefficients are
presented, showing how they vary with plate properties and angle of incidence. It is
also shown that in the absence of incident waves and for certain relations between
their wavelength and frequency, symmetric edge waves exist which travel along the
crack and decay in a direction normal to the crack.

1. Introduction
In this paper we consider the scattering of obliquely incident waves by a narrow

straight-line crack separating two semi-infinite thin elastic plates floating on water of
finite depth. A number of authors have considered related problems since they are
important in considering the effect of cracks in continuous Arctic or Antarctic sea
ice on ocean wave propagation. For a general review see Squire et al. (1995). Also,
more recently, such problems have become relevant to the possible construction of
large floating runways for use in Japan, where the effect of bending of such large
structures cannot be ignored.

An early solution for the scattering of acoustic waves propagating through a half-
space containing a compressible fluid bounded by two thin elastic plates having
different properties separated by crack is provided by Kouzov (1963a). He makes
use of an integral representation which enables the problem to be reduced to a
Riemann–Hilbert problem which he solves explicitly, it being equivalent to a Wiener–
Hopf formulation. In a subsequent paper (Kouzov 1963b) he assumes the plates have
identical properties.

One of the earliest related problems to be considered was the reflection and trans-
mission of waves, obliquely incident from an open sea region, by a single semi-infinite
thin elastic plate in finite water depth. Unaware of the work of Kouzov, Evans &
Davies (1968) in an unpublished report used the Wiener–Hopf technique to obtain an
explicit solution of the resulting boundary-value problem in terms of two constants
which were determined in terms of the conditions of zero bending moment and shear
stress assumed to be satisfied at the edge of the plate. Because of the complicated
nature of the solution no numerical calculations were made and the authors resorted
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to a shallow-water solution from which the refection and transmission coefficients
were computed.

A number of authors have revisited the problem since, often using the Wiener–Hopf
approach. An exception to this is the sequence of papers by Squire (1994a, b, c, d) in
which he considered a wide range of different ice conditions and resulting dispersion
equations, although he was forced to neglect the local evanescent wave fields in
order to make progress. In a major series of papers, Fox & Squire (1990, 1991,
1994) considered the full hydrodynamic equations including the local effects. They
replaced the conditions of continuity of potential and horizontal velocity across the
common water region under the edge of the plate by minimizing numerically integrals
over the depth of the square of the differences in potential and horizontal velocity
whilst satisfying the edge boundary conditions. They were able to obtain a wide
range of numerical results including the variation of reflection coefficient with angle
of incidence and ice thickness (Fox & Squire 1994). A different approach to the
problem has been taken by Sahoo, Yip & Chwang (2001). They use non-orthogonal
eigenfunction expansions to obtain infinite systems of equations which they solve by
truncation. However it is not clear how they eliminate certain constants which appear.
Further modifications to the methods of Fox & Squire (1994) and Sahoo et al. (2001)
are made by Teng et al. (2001).

More recently Balmforth & Craster (1999) and Chung & Fox (2002) have revisited
the problem using the Wiener–Hopf method adopted by Evans & Davies (1968). In
each of these papers the authors introduce ideas which enable numerical results to be
obtained once the unknown constants have been determined from the edge conditions.
Chakrabarti (2000), in considering the two-dimensional problem in infinitely deep
water, reduced the problem to solving a Carlemann type of singular integral equation
which he solved explicitly. Despite the author’s claim to the contrary, the method
provides no obvious reduction in complexity from the Wiener–Hopf approach
although numerical results are obtained. In a recent series of papers, Tkacheva
(2001a, b, c) considers the problem for normally incident waves only in both finite
and infinite water depth, and obtains a remarkable simplification in the calculation of
the constants, resulting in the modulus of the reflection coefficient being expressible
as the ratio of the difference and the sum of the wavenumbers in the open sea and in
the elastic plate.

Acoustic scattering by a crack of finite width separating two thin elastic plates in
infinite depth of compressible fluid has been considered by Andronov, Belinsky &
Dauer (1996). No explicit solution exists in this case and the authors reduce the
problem to an integral equation for the potential across the crack using an appropriate
Green’s function. This is then solved numerically using a variant on the Galerkin
method.

The particular problem studied here is easier than the ones described above and can
be solved explicitly. Like Kouzov many later authors have generalized the problem
to allow the plates separated by the crack to have different properties and this is
best approached by the Wiener–Hopf method. For example, Marchenko, first in
finite depth (1993), and then in infinite depth (1997a), allows the plates to have
different thicknesses and assumes a general stress tensor in the plates to give a
general dispersion relation for wave propagation. In each case the results are sketchy
although some numerical results are presented. A clearer description of the solution
and results, for deep water, is given in Marchenko (1999) whilst in Marchenko
(1997b) the shallow-water equations are used to solve the problem when the crack
has finite dimensions. Two recent approaches to the crack problem are due to Squire &
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Dixon (2000) who solve the problem in two dimensions for normal wave incidence,
and Williams & Squire (2002) who extend the problem to oblique wave incidence.
In both cases an appropriate Green’s function in infinitely deep water is derived
to obtain simple expressions for the reflection and transmission coefficients when
the plates have identical properties. Earlier, Barrett & Squire (1996) considered the
problem for oblique wave incidence and finite water depth using the variational
method of Fox & Squire (1994).

The approach we use here has much in common with the work of Williams &
Squire (2002), but our solution is simpler because we take full advantage of the
symmetry of the problem. The difficulty with all such problems is the higher-order
conditions to be satisfied at the edge of each plate. However, because of symmetry
we can split the solution into the sum of even and odd solutions, each of which
needs to satisfy one condition at one edge since then both the second condition at
that edge and the two conditions at the other edge in this symmetric part of the
solution are automatically satisfied by symmetry arguments. An explicit result for the
symmetric potential then results from applying Green’s identity to an appropriate
symmetric Green’s function and the unknown symmetric potential. Thus the solution
turns out to be a single known series multiplied by a constant, Ps , which is related to
the slope of the edge of the plate. Satisfaction of the zero bending moment condition
then determines Ps . Likewise, the solution of the antisymmetric part, utilizing an
appropriate antisymmetric Green’s function, turns out to be a known series multiplied
by a constant, Qa , which is related to the displacement of the edge of the plate.
Satisfaction of the zero shear stress condition now determines Qa . Note that despite
the vanishing of certain higher derivatives defining the shear stress and bending
moment at both edges, neither Ps nor Qa is continuous across the crack.

There are other ways in which our approach differs from that of Williams &
Squire (2002). Like them we consider obliquely incident waves to be scattered by
the crack, but we recognize that this allows for the possibility, which we address,
of the existence of localized edge waves travelling along the crack in the absence of
incident waves, which do not radiate energy away from the crack. This can occur if
the wavenumber of such waves is large enough so that waves cannot radiate to and
from infinity.

Secondly, we assume finite water depth. This enables us to make a fresh approach
to the problem by expanding the solutions in the water region beneath each plate in
a series of eigenfunctions each term of which corresponds to a root of the dispersion
relation. In seeking to match the expansions across the common region beneath the
crack, we make use of a non-orthogonal condition first introduced by Lawrie &
Abrahams (1999) and applied to a related problem (Lawrie & Abrahams 2002) which
is shown to be satisfied by the eigenfunctions. Again symmetric and antisymmetric
solutions are sought and the resulting series expressions are shown to agree with those
obtained by the Green’s function approach. This is important as it demonstrates that
the assumed expansions in a series of eigenfunctions corresponding to all the roots of
the dispersion relation is in fact complete and hence justified, thereby paving the way
to using such non-orthogonal expansions in similar problems in finite depth where an
explicit solution is not available.

The layout of the paper is as follows. The mathematical problem is formulated
in the next section and includes a description of the separation into symmetric and
antisymmetric parts and its implications. The solution using Green’s functions is
derived in § 3 whilst in § 4 the shorter eigenfunction expansion method of solution
is derived. A brief § 5 presents the conditions for the existence of localized waves
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travelling along the crack. The results are presented in § 6 where curves of reflection
and transmission coefficients are sketched as functions of wave incident angle, wave
frequency and plate geometry. Throughout the paper careful attention is paid to
convergence matters which are considered in the Appendix, where a number of
identities are also proved.

2. Formulation and preliminaries
Consider the following problem. Fluid occupies the region −h < y < 0, −∞ <

x, z < ∞ which is bounded by a rigid bottom y = −h and the free surface y = 0
on which there are floating two semi-infinite thin elastic plates separated only by
an infinitely long crack defined by x = 0, −∞ < z < ∞. At x = y = 0 the plates
are free so that both the shearing stress and bending moment vanish. We seek the
reflection and transmission coefficients when a plane wave propagating along one of
the plates is obliquely incident from x = ∞ on the junction between the plates. Under
the assumptions of linearized theory we seek a harmonic function Φt (x, y, z, t) in the
region −∞ < x, z < ∞ and look for a solution φt where

Φt (x, y, z, t) = Re {φt (x, y)eilz−iωt}. (2.1)

Then φt satisfies

(∇2 − l2)φt = 0, −h < y < 0, −∞ < x < ∞, (2.2)

∂φt

∂y
= 0, y = −h, −∞ < x < ∞, (2.3)

Lφt ≡
(

β

(
∂2

∂x2
− l2

)2

+(1− δ)

)
∂φt

∂y
−φt = 0, y = 0, x ∈ (−∞, 0)∪ (0, ∞). (2.4)

Here, we have adopted the non-dimensionalization and notation used by Tkacheva
(2001a) in which lengths have been scaled by the frequency parameter κ = ω2/g (g
is acceleration due to gravity), and the wavenumber in the z-direction, l, has been
scaled by 1/κ . The dimensionless parameter β is defined by β = Dκ4/(ρwg) where
D is the flexural rigidity of the ice sheet and ρw is the density of the fluid. Also,
the dimensionless quantity δ is defined to be (ρi/ρw)d where ρi is the density, and
d is the thickness, of the ice. To be consistent with the linearization process, it is
necessary in the problems considered by, for example, Evans & Davies (1968) and
Tkacheva (2001a), which involve ocean waves interacting with floating ice sheets, to
assume d � 1, implying δ � 1, so that the condition (2.4) may be applied on y = 0
rather than y = −d . However, in the problem being considered here the entire surface
is covered by ice of the same thickness so we may relax the smallness condition on δ

and we therefore retain it throughout our analysis.
At the edges of the plates, we impose conditions of zero bending moment and zero

shear stress, which are expressed by

Bφt ≡
[(

∂2

∂x2
− νl2

)
∂φt

∂y

]
y=0

→ 0 as x → 0±, (2.5)

and

Sφt ≡
[

∂

∂x

(
∂2

∂x2
− ν1l

2

)
∂φt

∂y

]
y=0

→ 0 as x → 0±, (2.6)
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where ν1 = 2 − ν and ν is Poisson’s ratio. Quantities of particular interest associated
with the edges of the plate are then

P ±
t = lim

x→0±

∂2φt

∂x∂y

∣∣∣∣
y=0

, Q±
t = lim

x→0±

∂φt

∂y

∣∣∣∣
y=0

, (2.7)

which represent, respectively, the gradient and elevation at the edges of the semi-
infinite plates on the positive and negative side of the crack at x = 0. Despite the
vanishing of combinations of higher-order derivatives in (2.5) and (2.6) on the edges
of the plates the quantities P

±
t and Q

±
t do not vanish.

In order to complete the description of the problem we must apply the appropriate
radiation conditions at infinity. This is achieved by considering separable solutions of
(2.2) subject to the conditions (2.3) and (2.4) in either region x > 0 or x < 0. Such
solutions are given by

e±iknx Yn(y) (2.8)

where Yn(y) satisfies

Y ′′
n (y) = γ 2

n Yn(y), Y ′
n(−h) = 0, (2.9)(

βγ 4
n + 1 − δ

)
Y ′

n(0) − Yn(0) = 0, (2.10)

in which we have defined

γ 2
n = k2

n + l2. (2.11)

Equations (2.8), (2.9) and (2.10) constitute an eigensystem in which the eigenfunctions
defined to be

Yn(y) = cosh γn(y + h) (2.12)

are non-orthogonal. However it can be shown, by integrating by parts, that∫ 0

−h

Yn(y)Ym(y) dy = Cnδnm − β
(
γ 2

m + γ 2
n

)
Y ′

m(0)Y ′
n(0) (2.13)

(see, for example, Lawrie & Abrahams 2002) where

Cn = 1
2

{
h +

(
5βγ 4

n + 1 − δ
)
[Y ′

n(0)/γn]
2
}
. (2.14)

Now substitution of equation (2.12) into (2.10) gives the dispersion relation

K(kn) ≡
(
βγ 4

n + 1 − δ
)
γn tanh γnh − 1 = 0 (2.15)

governing possible values of kn. It can be shown that this has a pair of real roots
±γ0 with corresponding roots ±k0 which describe progressive waves, provided γ0 > l.
Note, however, that if γ0 < l no such waves are possible and any motion will be
confined to the crack. For the time being we will consider only the case γ0 > l where
waves are radiated by the crack. In addition there is a sequence of pure imaginary
roots ±kn with n = 1, 2, . . . and four complex roots ±k−1 and ±k−2 symmetric about
the real and imaginary axes. Let the roots in the first and second quadrants be k−1

and k−2.
Then we prescribe the far-field behaviour of φt by

φt (x, y) ∼
{

(e−ik0x + Rte
ik0x)Y0(y), x → ∞

Tte
−ik0xY0(y), x → −∞,

(2.16)

where Rt and Tt denote respectively the reflection and transmission coefficents due
to a wave obliquely incident from x = ∞. If the crests of the incoming wave make
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an angle of θ with the crack along x = y = 0 then l = k0 tan θ = γ0 sin θ and then
clearly γ0 > l.

Because of symmetry in the geometry of the problem about the plane x = 0 we can
achieve considerable simplification by writing

φt = 1
2
(φts + φta), (2.17)

where φts (φta) is even (odd) about x = 0. Then we need only consider x > 0, using
the fact that

φts(−x, y) = φts(x, y) = φt (x, y) + φt (−x, y),

φta(−x, y) = −φta(x, y) = −φt (x, y) + φt (−x, y).

}
(2.18)

Since φt and ∂φt/∂x are continuous functions throughout the fluid region it follows
that

∂φts(0, y)

∂x
= φta(0, y) = 0, −h < y < 0. (2.19)

An important step in the solution procedure is to explicitly build the influence of the
incident wave into φts and φta by writing, for x � 0

φts(x, y) = φ0s(x, y) + φs(x, y),

φta(x, y) = φ0a(x, y) + φa(x, y),

}
(2.20)

where φ0s(x, y) = (e−ik0x+eik0x)Y0(y) and φ0a(x, y) = (e−ik0x − eik0x)Y0(y) are respectively
symmetric and antisymmetric standing waves.

The functions φs(x, y) and φa(x, y) now describe outgoing waves only and if we
write

φs,a(x, y) ∼ Rs,ae
ik0xY0(y), x → ∞, (2.21)

then it may be confirmed that

Rt = 1
2
(Rs + Ra), Tt = 1 + 1

2
(Rs − Ra). (2.22)

Applying Green’s Identity to each of the functions φts , φta and φt in turn, each with
their complex conjugates, and over the appropriate fluid region gives the usual energy
balance relations, namely

|Rs + 1| = |Ra − 1| = 1, |Rt |2 + |Tt |2 = 1. (2.23)

Since the function φt has been decomposed into a pair of functions now defined
in x � 0 only, all other properties relating to the problem need to be decomposed
similarly. The principal difficulty here is associated with the limit of the quantity
∂φt/∂y and its derivatives in x on y = 0 as x → 0±.

Clearly, (2.2)–(2.4) apply to the functions φs and φa separately. So consider first the
boundary condition (2.5). Now Bφt is a continuous function of x which vanishes as
x → 0±. Hence, from equation (2.18)

Bφta = Bφts = 0, x = 0. (2.24)

This also means that Bφa = 0 at x = 0 and

(Bφs)x=0 = −(Bφ0s)x=0 = 2
(
k2

0 + νl2
)
Y ′

0(0). (2.25)

Similar arguments apply in the decomposition of φt under the operator S occurring
in (2.6), the main difference being that S is a operator that is odd in x. Hence it can
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be shown in this case that

Sφts = Sφs = 0, x = 0, (2.26)

and then that

(Sφa)x=0 = −(Sφ0a)x=0 = −2ik0

(
k2

0 + ν1l
2
)
Y ′

0(0). (2.27)

Next, it is straightforward to confirm, using the definition of φt in (2.7), that

P ±
t = −ik0Y

′
0(0) + 1

2
(±Ps + Pa), Q±

t = Y ′
0(0) + 1

2
(Qs ± Qa) (2.28)

where we define

Ps,a = lim
x→0

∂2φs,a

∂x∂y

∣∣∣∣
y=0

, Qs,a = lim
x→0

∂φs,a

∂y

∣∣∣∣
y=0

. (2.29)

In particular, the quantities

[Pt ] ≡ P +
t − P −

t = Ps, [Qt ] ≡ Q+
t − Q−

t = Qa (2.30)

depend upon just Ps and Qa respectively. As will be shown in the next section, these
two quantities may be regarded as the fundamental unknowns in the problem since
Rs and Ra may be determined from them directly.

3. Solution using a Green’s function approach
We shall seek the solution to each of the symmetric and antisymmetric problems in

turn by using Green’s Identity in conjunction with the appropriate Green’s functions.
Thus, we shall require Green’s functions Gs(x, y; ξ, η) and Ga(x, y; ξ, η) defined for
x, ξ � 0, −h < y, η < 0 which satisfy the conditions

∂Gs(0, y; ξ, η)

∂x
= Ga(0, y; ξ, η) = 0, −h < y < 0. (3.1)

That is, Gs and Ga are symmetric and antisymmetric (respectively) about x = 0. They
may be written as the combinations

Gs,a(x, y; ξ, η) = G(x, y; ξ, η) ± G(x, y; −ξ, η), (3.2)

where subscripts s(a) refer to upper (lower) signs respectively and G(x, y; ξ, η) is the
Green’s function for the infinite strip −∞ < x, ξ < ∞ defined by

(∇2 − l2)G = δ(x − ξ )δ(y − η), (3.3)

∂G

∂y
= 0, y = −h, −∞ < x < ∞, (3.4)

LG = 0, y = 0, −∞ < x < ∞, (3.5)

where L is defined by (2.4) and G is chosen to represent outgoing waves as |x| → ∞.
It is a standard procedure to derive the Green’s function G by applying Fourier
transform methods and details of its derivation are therefore not recorded here. We
find that

G(x, y; ξ, η) =
1

2π

∫ ∞

−∞

e−iα|x−ξ |f (α, y>, y<)

γK(α)
dα (3.6)

where

f (α, y, η) = cosh γ (η + h){−sinhγy − (βγ 4 + 1 − δ)γ cosh γy} (3.7)
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and y> = max{y, η}, y< = min{y, η}. Here,

K(α) = (βγ 4 + 1 − δ)γ sinh γ h − cosh γ h, (3.8)

where γ 2 = α2 + l2, which coincides with the left-hand side of the dispersion relation
(2.15) when α = ±kn, n = −2, −1, 0, 1, . . .. The path of integration in (3.6) passes
above the pole of K(α) at α = −k0 and below the pole at α = k0 in order that the
radiation condition be satisfied.

It is convenient for what follows to express G as an infinite series by deforming
the path of integration in (3.6) downwards into the lower half-plane, picking up
contributions from the residues at the poles α = −kn, n = −2, −1, 0, 1, 2 . . . of the
function K(α). Thus, making use of (3.2) we find, for x, ξ � 0,

Gs,a(x, y; ξ, η) = −i

∞∑
n=−2

Yn(y)Yn(η)

2knCn

{
eikn|x−ξ | ± eikn(x+ξ )

}
, (3.9)

where the relation

K ′(kn) = −K ′(−kn) = 2knCn/Y ′
n(0) (3.10)

has been used. In what follows we shall make use of

∂Gs

∂y

∣∣∣∣
y=0

= −i

∞∑
n=−2

Y ′
n(0)Yn(η)

knCn

cos knx eiknξ , ξ > x, (3.11)

∂Ga

∂y

∣∣∣∣
y=0

= −
∞∑

n=−2

Y ′
n(0)Yn(η)

knCn

sin knx eiknξ , ξ > x. (3.12)

It follows that, as expected, on x = 0

∂Ga

∂y

∣∣∣∣
y=0

=
∂3Ga

∂x2∂y

∣∣∣∣
y=0

=
∂2Gs

∂x∂y

∣∣∣∣
y=0

=
∂4Gs

∂x3∂y

∣∣∣∣
y=0

= 0 (3.13)

since it can be shown, using methods similar to that described in the Appendix for
related series, that all the corresponding infinite series are absolutely and uniformly
convergent as x → 0.

We shall also require

BGs ≡
[(

∂2

∂x2
− νl2

)
∂Gs

∂y

]
y=0

→ i

∞∑
n=−2

(
νl2 + k2

n

)
Y ′

n(0)

knCn

Yn(η)eiknξ as x → 0, (3.14)

SGa ≡
[

∂

∂x

(
∂2

∂x2
− ν1l

2

)
∂Ga

∂y

]
y=0

→
∞∑

n=−2

(
ν1l

2 + k2
n

)
Y ′

n(0)

Cn

Yn(η)eiknξ as x → 0,

(3.15)

obtained from (3.11) and (3.12). Again it can be shown that both series are absolutely
and uniformly convergent. We are now in a position to determine our solution. We
only derive φs(x, y) in detail, stating the corresponding results for φa(x, y).

We apply Green’s Identity to Gs and φs in the semi-infinite region x > 0, −h < y < 0,
noting that since both functions describe outgoing waves to x → ∞ there will only
be a contribution to the integral around the boundary from the surface condition on
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y = 0. Thus, we have

φs(ξ, η) =

∫ ∞

0

(
φs

∂Gs

∂y
− Gs

∂φs

∂y

)
y=0

dx. (3.16)

The details of how we treat this integral are rather messy, but are of fundamental
importance in the approach to this problem and will therefore be presented in some
detail. Using the definition of the boundary operator on y = 0 we find

φs(ξ, η) =

∫ ∞

0

[
β

(
∂2

∂x2
− l2

)2
∂φs

∂y

∂Gs

∂y
− β

(
∂2

∂x2
− l2

)2
∂Gs

∂y

∂φs

∂y

]
y=0

dx

= −2l2βH + β

∫ ∞

0

[
∂5φs

∂x4∂y

∂Gs

∂y
− ∂5Gs

∂x4∂y

∂φs

∂y

]
y=0

dx, (3.17)

where

H =

∫ ∞

0

[
∂3φs

∂x2∂y

∂Gs

∂y
− ∂3Gs

∂x2∂y

∂φs

∂y

]
y=0

dx. (3.18)

Now applying integration by parts repeatedly to the second integral in (3.17) we
obtain

φs(ξ, η) = β(I − J − 2l2H ), (3.19)

where

I =

[
∂4φs

∂x3∂y

∂Gs

∂y
− ∂4Gs

∂x3∂y
,
∂φs

∂y

]∞

0

, (3.20)

J =

[
∂3φs

∂x2∂y

∂2Gs

∂x∂y
− ∂3Gs

∂x2∂y

∂2φs

∂x∂y

]∞

0

(3.21)

and both I and J are to be evaluated on y = 0. Note that the integral remaining
from twice integrating by parts vanishes.

Now we are able to make use of the boundary conditions at x = y = 0. First, note
from (2.6), (2.26) that

∂4φs

∂x3∂y
= ν1l

2 ∂2φs

∂x∂y
= ν1l

2Ps (3.22)

from the definition of Ps in (2.29). In conjunction with the results in (3.13) we find
that

I = −ν1l
2Ps

∂Gs

∂y

∣∣∣∣
x=y=0

, J = Ps

∂3Gs

∂x2∂y

∣∣∣∣
x=y=0

. (3.23)

Note, again, that all contributions from the limit x = ∞ in I and J vanish on account
of both Gs and φs representing outgoing waves only as x → ∞.

Finally, integration by parts in (3.18) gives

H =

[
∂2φs

∂x∂y

∂Gs

∂y
− ∂2Gs

∂x∂y

∂φs

∂y

]∞

0

= −Ps

∂Gs

∂y

∣∣∣∣
x=y=0

(3.24)

using (2.27) and (3.13). So now (3.19) is

φs(ξ, η) = −βPs

[(
∂2

∂x2
− νl2

)
∂Gs

∂y

]
x=y=0

= −βPs(BGs)x=0, (3.25)

where ν = 2 − ν1 has been used.
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Substitution from (3.14) now gives, after reverting to variables x, y,

φs(x, y) = −iβPs

∞∑
n=−2

(
νl2 + k2

n

)
Y ′

n(0)

knCn

Yn(y)eiknx. (3.26)

Application of the boundary condition (2.25) now gives

2Y ′
0(0)

(
k2

0 + νl2
)

= iβPs

∞∑
n=−2

(
νl2 + k2

n

)2
[Y ′

n(0)]2

knCn

(3.27)

and this equation determines Ps and hence φs(x, y) from (3.26). The convergence of
the infinite sum is shown in the Appendix.

Notice that deriving Ps from (3.26) by using (2.29) results in an identity

β

∞∑
n=−2

(
νl2 + k2

n

)
[Y ′

n(0)]2

Cn

= 1, (3.28)

which is proved in the Appendix.
We next give brief details of how the method used above for the symmetric case

can be applied to the antisymmetric case. This time, φa(x, y) is used in conjunction
with Green’s function Ga(x, y; ξ, η) in Green’s Identity. In this case, (2.24) and the
properties of Ga in (3.13) are used to simplify various terms that arise during the
integration by parts and eventually it is found that

φa(ξ, η) = βQa(SGa)x=0, (3.29)

where S is defined by (2.6). Then, the analogue of (3.26) is

φa(x, y) = βQa

∞∑
n=−2

(
ν1l

2 + k2
n

)
Y ′

n(0)

Cn

Yn(y)eiknx. (3.30)

Application of the remaining boundary condition (2.27) to φa gives

2iY ′
0(0)k0

(
k2

0 + ν1l
2
)

= iβQa

∞∑
n=−2

kn

(
ν1l

2 + k2
n

)2
[Y ′

n(0)]2

Cn

(3.31)

which determines the value of Qa .
Again, deriving Qa from (3.30) using (2.29) results in an identity

β

∞∑
n=−2

(
ν1l

2 + k2
n

)
[Y ′

n(0)]2

Cn

= 1, (3.32)

which is proved in the Appendix.
Taking the limit of x → ∞ in either (3.26) or (3.30) selects just the n = 0 propagating

wave mode from the infinite sum which, when compared with the assumed behaviour
(2.21), reveals that

Rs =

(
−iβ

(
k2

0 + νl2
)
Y ′

0(0)

k0C0

)
Ps, (3.33)

Ra =

(
β
(
k2

0 + ν1l
2
)
Y ′

0(0)

C0

)
Qa. (3.34)
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Hence, it is only necessary to calculate the quantities Ps and Qa in order to determine
the reflection and transmission coefficients, as predicted at the end of § 2.

The relations (3.33) and (3.34) may be derived independently without having to
derive the complete solution by applying Green’s Identity to the two functions φs and
φ0s in the former case and to φa and φ0a in the latter case in the region 0 < x < ∞ and
−h < y < 0. This process uses properties of the various functions at the point x = 0
and for large x and has many similarities with the application of Green’s Identity
already detailed in this section.

4. Solution using an eigenfunction expansion method
The infinite series for φs and φa obtained in the previous section were sums over all

roots of the dispersion relation (2.15), suggesting that such an expansion is complete.
In this section we show that adopting such an eigenfunction expansion from the
outset and applying all the conditions required for the solution of the symmetric
and antisymmetric parts of the problem leads to the same solution as found in the
previous section with much less effort. The same approach has been used by Lawrie &
Abrahams (1999) in a related membrane problem, and also in determining the possible
modes in a semi-infinite rectangular duct bounded by three rigid walls and an elastic
plate (Lawrie & Abrahams 2002).

Consider the problem for φs(x, y) defined in x � 0 discussed in the previous section
and let us assume an expansion in terms of the separable solutions in (2.8) ensuring
that the solution at infinity remains bounded. That is, we write

φs(x, y) =

∞∑
n=−2

Ane
iknxYn(y), (4.1)

where the Yn(y) are non-orthogonal functions over [−h, 0] which satisfy the relation
(2.13), which is reproduced here for convenience:∫ 0

−h

Yn(y)Ym(y)dy = Cnδnm − β
(
γ 2

m + γ 2
n

)
Y ′

m(0)Y ′
n(0). (4.2)

Application of the condition (2.19) gives

0 =

∞∑
n=−2

iknAnYn(y), (4.3)

and then multiplying by Ym(y) and integrating over −h < y < 0 using (4.2) now gives

kmAmCm = βγ 2
mY ′

m(0)

∞∑
n=−2

knAnY
′
n(0) + βY ′

m(0)

∞∑
n=−2

γ 2
n knAnY

′
n(0). (4.4)

Applying (2.26) with S defined by (2.6) to (4.1) gives the identity

0 =

∞∑
n=−2

kn

(
k2

n + ν1l
2
)
AnY

′
n(0), (4.5)

which may be expressed, using the relation γ 2
n = k2

n + l2, as

∞∑
n=−2

knγ
2
n AnY

′
n(0) = (1 − ν1)l

2

∞∑
n=−2

knAnY
′
n(0). (4.6)
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It can be seen from (2.29) and (4.1) that the summation on the right-hand side of
(4.6) is simply −iPs and so using (4.6) in (4.4) we have

kmAmCm = −iβγ 2
mY ′

m(0)Ps − iβ(1 − ν1)l
2Y ′

m(0)Ps = −iβPs

(
k2

m + νl2
)
Y ′

m(0) (4.7)

since ν1 = 2− ν. Putting (4.7) into (4.1) results in (3.26) with Ps determined, as before,
by applying (2.25) to obtain (3.27).

A similar approach to the solution of the antisymmetric problem for φa(x, y) results
in the series (3.30). Thus we seek a solution

φa(x, y) =

∞∑
n=−2

Bne
iknxYn(y). (4.8)

In this case the Dirichlet condition satisfied by φa gives

0 =

∞∑
n=−2

BnYn(y). (4.9)

Again we multiply by Ym(y) and integrate over −h < y < 0 using the non-orthogonal
condition (4.2) to obtain

BmCm = βγ 2
mY ′

m(0)

∞∑
n=−2

BnY
′
n(0) + βY ′

m(0)

∞∑
n=−2

γ 2
n BnY

′
n(0). (4.10)

In this case the required condition to be satisfied at the plate edge by φa is that given
above (2.25) with S defined by (2.5), which produces the identity

0 =

∞∑
n=−2

(
k2

n + νl2
)
BnY

′
n(0) (4.11)

and this may be written

∞∑
n=−2

γ 2
n BnY

′
n(0) = (1 − ν)l2

∞∑
n=−2

BnY
′
n(0). (4.12)

We now substitute (4.12) into (4.10) noting from (2.29) and (4.8) that the sum on the
right-hand side of (4.12) is Qa , to obtain

BmCm = βγ 2
mY ′

m(0)Qa + β(1 − ν)l2Y ′
m(0)Qa = βQa

(
k2

m + ν1l
2
)
Y ′

m(0). (4.13)

If we now substitute (4.13) into (4.8) we obtain the expression (3.30) with Qa

determined, as before, by applying (2.27) to obtain (3.31).

5. Edge waves along the crack
From (2.12) to (2.15) it is clear that for a given γ0 corresponding to a root k0 of the

dispersion relation, we can increase the angle θ which the incident wave crests make
with the crack, and hence the component of the wavenumber l in the direction of the
crack, since l = γ0 sin θ , until θ approaches π/2 and the direction of the incident wave
is almost parallel to the crack. For values of l > γ0, however, no progressive wave is
possible and this defines a cut-off frequency, ωc(l) say, which may be determined from
the dispersion relation (2.15) by taking γ0 = l. That is, ωc(l) may determined from
(βl4 + 1 − δ)l sinh lh = cosh lh where, due to the non-dimensionalization employed,
the frequency is embedded in the three terms β , δ and h. Then for a given wavenumber
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component in the direction of the crack, l, and wave frequency ω less than the cut-off
value of ωc(l), no wave can be incident from infinity and no wave can radiate from
the crack away to infinity. Thus, there is the possibility of generating edge waves,
trapped along the length of the crack which decay exponentially away from the crack.
Since there is no incident wave a solution can be sought which is either symmetric
or antisymmetric about x = 0 and each part can be constructed as before, bearing
in mind that throughout γ0 < l. The only major difference comes when applying the
final condition of the problem in each case. Previously, the presence of the incident
wave provided an inhomogeneous equation defining the values of Ps and Qa , namely
(3.27) and (3.31). In the edge wave case, where γ0 < l the left-hand sides of these
equations vanish (since the problem is homogeneous and the values of Ps and Qa can
be chosen arbitrarily) and one is left with the conditions

i

∞∑
n=−2

(
νl2 + k2

n

)2
[Y ′

n(0)]2

knCn

= 0 (5.1)

for symmetric edge waves and

i

∞∑
n=−2

kn

(
ν1l

2 + k2
n

)2
[Y ′

n(0)]2

Cn

= 0 (5.2)

for antisymmetric edge waves.
Since γ0 < l, k0 now lies on the imaginary axis along with the roots kn, n = 1, 2, . . ..

Using the fact that k−2 = −k−1, where the overbar denotes complex conjugate, it is
not difficult to show that the left-hand sides of both (5.1) and (5.2) are real. Hence,
as is common in problems where trapped waves are to be determined, the conditions
to be satisfied are real.

6. Results
The governing equations in (2.1)–(2.6) have been presented in a dimensionless form

which was chosen to reduce the complexity of the mathematical formulation. They
were derived from the dimensional equations (see Fox & Squire 1994 for example) by
scaling lengths with a frequency parameter κ = ω2/g and wavenumbers by 1/κ . For
the purpose of presenting meaningful results we shall re-introduce physical variables
and also spend a little time identifying various important non-dimensional quantities
that arise from this. The system that we shall employ is as follows: all physical lengths
and wavenumbers will be denoted by barred symbols. Accordingly, the actual depth
of the fluid is h̄ where h = κh̄ whilst d = κd̄ , and the actual wavenumbers l̄ and γ̄0

are defined in terms of dimensionless wavenumbers l and γ0 by l̄ = κl and γ̄0 = κγ0.
We choose to write the non-dimensional parameter β introduced in (2.4) as β ′(κd̄)4

where d̄ is the physical thickness of the sheet and now β ′ = D/(ρwgd̄4) is a non-
dimensional parameter which depends only on properties relating to the plate and the
fluid it rests on. In terms of other physical constants, D is given by Ed̄3/(12(1 − ν2))
where E is Young’s modulus and ν is Poisson’s ratio. Squire & Dixon (2000)
provide values for the various physical constants which occur in the definition of
β ′ corresponding to an ice sheet on water which we shall adopt here. They define
values of E = 5 GPa, ν = 0.3, ρw = 1025 kg m−3, which gives a value of β ′ = 45536/d̄ ,
d̄ being the thickness of the plate. In a similar manner, we separate frequency from δ

by writing δ = δ′(κd̄) where δ′ = ρi/ρw and ρi = 922.5 kgm−3 is the density of ice so
that δ′ = 0.9 is a fixed constant.
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Figure 1. Variation of reflection and transmission coefficients with wave period for the
configuration considered by Squire & Dixon (2000) with ice thicknesses, d̄ , of 0.5 m (solid),
1 m (long dashed) and 2 m (short dashed) in water of depth h̄/d̄ = 80. See text for other
parameters.

A further non-dimensional parameter that we use is h̄/d̄ which indicates the depth
of water with respect to the thickness of the ice sheet.

We use a variety of different measures to characterize the wave motion on the
sheets. Perhaps the most useful is λ̄/d̄ , where λ̄ = 2π/γ̄0 is the wavelength of the
obliquely incident wave. In terms of quantities appearing throughout our formulation
we have λ̄/d̄ = (2πh̄/d̄)/(γ0h) since γ0h = γ̄0h̄.

To summarize then, in order to determine the solution we need to provide values of
β ′, δ′ and h̄/d̄ , λ̄/d̄ which together combine to give γ0h and θ , the angle of incidence.
Once these are known, the dispersion relation (2.15), which may now be written as

(β ′′(γ0h)4 + 1 − δ′′h)(γ0h) tanh(γ0h) − h = 0

where β ′′ = β ′(h̄/d̄)−4, δ′′ = δ′(h̄/d̄)−1, determines h = κh̄ and hence the frequency.
Having found h we can go back to the dispersion relation in its original dimensionless
form (2.15) and determine the roots γn, n = −2, −1, 1, 2, . . . , and hence all other
quantities needed to compute the solution.

In order to compare our results with those of Squire & Dixon (2000) we measure
the variation of |Rt | and |Tt | with wave period (2π/ω) and choose h̄/d̄ = 80, large
enough to be considered as water of infinite depth. In figure 1 we show curves of |Rt |
and |Tt | for ice thickness d̄ of 0.5 m, 1 m and 2 m and add to the curves of |Rt | points
taken from figure 2 of Squire & Dixon (2000) which clearly confirm the accuracy of
our solution.

We should, at this point, mention the accuracy of the numerical scheme. Due to
the high rate of convergence of the series that are computed (see the Appendix),
very few terms are needed in the evaluation of the infinite sums which arise. For the
results computed here the infinite sums were truncated at the 100th term, more than
enough to ensure accuracy to six decimal places in all cases. The pure real root and
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Figure 2. Variation of |Rt | with wavelength for β ′ = 45 536 and with h̄/d̄ taking values of
80 (solid), 40 (long dashed), 20 (medium dashed), 10 (short dashed) and 5 (dotted). Points are
from shallow-water theory for h̄/d̄ = 5.

sequence of pure imaginary roots of the dispersion relation (2.15) are not difficult to
find numerically. For the pair of complex roots, only the root in the first quadrant
needs to be found since the other is expressible in terms of it. For this, we use a fixed
point algorithm suggested by Fox & Chung (1998).

In figure 2 we present the variation of |Rt | with wavelength λ̄/d̄ for β ′ = 45 536
(equivalent to d̄ = 1 m in figure 1) in water of different depths. There is little overall
change in the reflection due to the varying depth of the fluid, as may be expected. The
solid curve in figure 2 corresponds to a depth-to-plate thickness ratio of h̄/d̄ = 80, and
the sequence of curves to the left of this solid curve represent values of h̄/d̄ equal to
40, 20, 10 and 5. The points overlaid onto figure 2 are computed using a shallow-water
approximation for h̄/d̄ = 5 which compares favourably with the corresponding curve
based on the full linear solution. This approximation, valid on the assumption that
λ̄/d̄ � 1, can be obtained by making a shallow-water approximation to the original
boundary value for φt in (2.1)–(2.6). Alternatively, the same result can be obtained
by letting h → 0 in the solution to the full linear problem which has the effect of
reducing the dispersion relation (2.15) to(

βγ 4
n + 1 − δ

)
γ 2

n h − 1 = 0,

a cubic in γ 2
n which has two real roots ±γ0 and two pairs of complex roots labelled

±γ−1 and ±γ−2 where γ−1 = −γ−2. The corresponding solutions for φs and φa are given
by (3.26) and (3.30) where the infinite sum is reduced to a sum over n = −2, −1, 0.
Similarly, the equations (3.27) and (3.31) defining Ps and Qa also have the infinite
sums replaced by sums over n = −2, −1, 0.

The effect of incident wave angle upon the reflection coefficient is presented for a
typical case (β ′ = 45 536, h̄/d̄ = 40, ν = 0.3) in figure 3 for four different wavelengths
of λ̄/d̄ = 40, 80, 120 and 160. In all cases, as the incident wave approaches a grazing
angle with the crack, the reflection coefficient rises sharply to a value of unity in
modulus. For relatively short wavelengths, there is a large reflection coefficient for
most wave angles although the reflection coefficient dips to zero as θ approaches π/2
before shooting back up to unity. A similar type of behaviour is seen for the longer
wavelength of λ̄/d̄ = 80, whereas for λ̄/d̄ = 120 there are two incident angles at which
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Figure 3. Variation of |Rt | with angle of incidence, θ , for β ′ = 45 536, h̄/d̄ = 40 and for

wavelengths λ̄/d̄ of 40 (solid), 80 (long dashed), 120 (short dashed) and 160 (dotted).
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Figure 4. A snapshot of surface displacement ∂φt/∂y|y=0 either side of a crack for a wave

incident from the right with λ̄/d̄ = 100 and θ = 30◦. Here β ′ = 45 536, h̄/d̄ = 40. Shading
from light to dark represents the displacement from peaks to troughs.

Rt is zero. Beyond this wavelength, the reflection coefficient tends to zero over most
incident angles.

To give an impression of what the wave field actually looks like we plot, in figure 4, a
snapshot in time of the surface displacement, defined by ∂φt/∂y|y=0, of the ice sheets

on either side of the crack when a wave of wavelength λ̄/d̄ = 100 is incident at an
angle of θ = 30◦ on the crack. In this case, the wave is partially reflected by the crack,
which gives rise to a standing-wave pattern to the right of the figure, and partially
transmitted beyond the crack where the wave field rapidly develops into a progressing
wave only as the distance from the crack increases. The discontinuity in displacement
and gradient across the crack is clearly visible in the figure.
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Figure 5. Variation of non-dimensional wave frequency ω(d̄/g)1/2 with non-dimensional
wavenumber l̄d̄ for edge waves along the crack between two plates with β ′ = 10 000, h̄/d̄ = 10
and with ν = 0.9 (solid), 0.8 (long dashed), 0.7 (short dashed), 0.6 (dotted).

In all the results for scattering of waves by a crack, physical constants corresponding
to ice sheets floating on water have been used. In particular we have used the value
of ν = 0.3 for Poisson’s ratio. In seeking edge wave solutions, it turns out to be of
interest to consider larger values of ν. This is because, when using a value of ν = 0.3,
edge waves only occur at values of wave frequency extremely close to the cut-off
frequency referred to in § 5. So let us first consider possible edge wave solutions, given
by the satisfaction of the conditions (5.1) for symmetric edge waves and (5.2) for
antisymmetric edge waves in the case γ0 < l, as discussed in § 5. In figure 5 curves are
shown for values of ν = 0.9 reducing to ν = 0.6 for β ′ = 104 and h̄/d̄ = 10 so that the
combination β ′′ = β ′(h̄/d̄)−4 is equal to unity. This choice is made to conform with the
only numerical results known to the authors on edge waves along cracks in ice sheets,
given by Marchenko (1999). However, Marchenko’s equations were presented in a very
different dimensional form: he was working in water of infinite depth and he made the
unrealistic choice of ν = 1 so no direct comparison with his results is attempted here.
In figure 5 we have plotted curves showing the variation of non-dimensional wave
frequency ω

√
d̄/g with non-dimensional wavenumber in the direction of the crack,

l̄d̄ , for which edge waves exist. Also displayed in figure 5 is the heavy curve showing
the cut-off frequency, ωc (̄ld̄) above which waves may be radiated to infinity and below
which edge waves may exist. This curve is defined by the dispersion relation when
γ0 = l (as already discussed in § 5) and may be written in the form

ωc(d̄/g)1/2 =

(
(β ′(̄ld̄)4 + 1)̄ld̄

δ ′̄ld̄ + coth(̄l h̄)

)1/2

.

It can be seen from figure 5 that as ν is reduced the curves of ω against l̄d̄ rapidly
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ω(d̄/g)1/2

l̄d̄ ωc(d̄/g)1/2 β ′ = 4553 β ′ = 45 536 β ′ = 455 360

0.04 0.123910 0.123873 0.123904 –
0.08 0.266655 0.266650 0.266490 0.266618
0.12 0.528693 0.528687 0.528358 0.528296
0.16 0.985268 – – 0.984114
0.20 1.657675 – – 1.655698
0.24 2.554927 – – 2.554674

Table 1. Values of frequency at which symmetric edge waves occur for ice sheets of thickness
d̄ = 10 m d̄ = 1 m and d̄ = 0.1 m for various values of l̄d̄ . Here, ν = 0.3, β ′ = 45 536 and
h̄/d̄ = 40.

Figure 6. Snapshot in time of the displacement of one ice sheet for an edge wave with
β ′ = 45 536, ν = 0.3 h̄/d̄ = 10, l̄d̄ = 0.12 and γ̄0d̄ = 0.11995. The edge wave is symmetric,
there are two wavelengths in the z-direction and the figure is scaled to show 20 wavelengths
in the x-direction.

approach the cut-off frequency ωc. All these curves are for symmetric edge waves;
it appears that no antisymmetric edge waves exist for ν < 1 as also noted by
Marchenko (1999).

Edge waves do exist for ν = 0.3, corresponding to ice, and a selection of edge wave
parameters are presented in table 1 for ice of different thickness, d̄ . However, in all
cases the wave frequency at which the edge wave occurs is very close to the cut-off.
The two left-hand columns in table 1 show values of l̄d̄ and the corresponding cut-off
frequency ωc(d̄/g)1/2. The remaining columns show values of ω(d̄/g)1/2 in the three
different cases considered which correspond to, in the case of ice sheets, thicknesses
of d̄ = 10 m, d̄ = 1 m and d̄ = 0.1 m reading columns from left to right. In all three
cases we have taken h̄/d̄ = 40 since the results do not vary much with the depth of
the water. Where there is no value displayed, it indicates that the edge wave is so
close to the cut-off that there is no difference between the computed values of ω and
ωc in the sixth decimal place.

Finally, we illustrate in figure 6 the displacement of just one half of a symmetric
edge wave propagating along the crack in a realistic case of ν = 0.3, β ′ = 45 536
(corresponding to an ice thickness of d̄ = 1 m), h̄/d̄ = 10. To generate this edge
wave we have chosen l̄d̄ = 0.12 (corresponding to a wavelength along the crack of
λ̄/d̄  50) which gives a value of γ̄0d̄ = 0.11995, very close to the cut-off. The vertical
scaling in figure 6 is arbitrary and scaling in the x-direction (away from the crack)
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represents a distance twenty times the wavelength along the crack. In this case, since
the edge wave is so close to the cut-off it decays very slowly away from the crack. In
other cases involving larger values of ν where edge waves can be generated further
away from the cut-off the waves decay much more rapidly with distance from the
crack.

7. Conclusion
In this paper an explicit solution has been obtained for the scattering of an obliquely

incident wave by a narrow line crack separating two semi-infinite elastic half-planes
floating on water of finite depth. Previous approaches to the problem have regarded
it as a special case of a Wiener–Hopf problem in which the boundary conditions
on each half-plane are the same. This results in an unwieldy solution involving four
constants which need to be determined from the edge conditions at each plate. Our
approach has followed that of Williams & Squire (2002) who use an appropriate
Green’s function in deep water and Green’s Identity to construct the solution. They
build in the continuity of bending moment and shearing stress at the edges, in terms
of what are in effect the constants Ps and Qa defined here, which are then determined
by applying the vanishing of the bending moment and shearing stress. Our approach
has been to exploit the symmetry of the problem, solving two separate problems for
the symmetric and antisymmetric parts. Whilst being restrictive in application, this
provides considerable simplification since working in x > 0 means that both potentials
and Green’s functions behave the same for large x so that there is no contribution
from large x, and also the symmetry ensures that only one of the edge conditions
needs to be applied to each part. The present approach could easily be extended to
water of infinite depth and result in the same explicit solutions (3.25) and (3.29) for
the symmetric and antisymmetric potentials but defined in terms of Green’s functions
appropriate to infinite depth (see Williams & Squire 2002).

Having derived the solution, an alternative simple eigenfunction expansion method
is described which, from the Green’s theorem approach, could now be known to be
complete despite the non-standard nature of the problem with the eigenfunctions being
non-orthogonal. In what may have otherwise appeared fortuitous in the eigenfunction
expansion method, the Green’s function approach shows, via the various symmetry
properties of the functions employed, exactly how certain summations reduce to
the constant Ps only in the symmetric problem and Qa only in the antisymmetric
problem.

Throughout the paper considerable care has been taken over convergence matters
which plague such high-order boundary-value problems. Results have been presented
for the variation of reflection and transmission coefficients with incident wavelength
and angle of incidence and plate properties. For normally incident waves and large
depths our results appear to be in total agreement with Squire & Dixon (2000).

Finally the consideration of obliquely incident waves has demonstrated the existence
of localized edge waves travelling symmetrically along the crack in the absence of
incident waves. For realistic values of Poisson’s ratio ν, these occur extremely close
to the cut-off frequency ω = ωc and only by varying ν up to values close to unity
is there any appreciable variation of ω from ωc. Similar results have been obtained
by Marchenko (1999) for deep water where ν was taken to be unity. It ought to be
possible to obtain a wider range of edge waves for the case of ice by considering a
crack of finite width. This problem, and the corresponding scattering problem will
form the basis of a future paper by the authors.
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Appendix
Throughout the paper various infinite series are derived, all of which can be shown

to be absolutely and, where appropriate, uniformly convergent. Typical of these is the
sum

Sm =

∞∑
n=−2

km
n [Y ′

n(0)]2

Cn

(A 1)

for m � 0, where Yn(y) and Cn are defined by (2.12) and (2.14), and kn are the roots
of (2.15). Now kn ∼ inπ, as n → ∞ and so γn = (k2

n + l2)1/2 ∼ inπ, n → ∞ also.
We have

Sm =

∞∑
n=−2

2km
n γ 2

n sinh2(γnh)

h + sinh2(γnh)
(
5βγ 4

n + 1 − δ
)

=

∞∑
n=−2

2km
n γ 2

n tanh2(γnh)

h + tanh2(γnh)
(
5βγ 4

n + 1 − δ − h
) (A 2)

and since from (2.15) tanh γnh = 1/(γn(βγ 4
n + 1 − δ)) we find

Sm =

∞∑
n=−2

ank
m
n , an =

2γ 2
n((

5βγ 4
n + 1 − δ − h

)
+ hγ 2

n

(
βγ 4

n + 1 − δ
)2) (A 3)

and an = O(1/n8) as n → ∞. So the series Sm is absolutely convergent for m � 6.
This shows in particular that the series in the definitions of Ps from (3.27) and

Qa from (3.31) are absolutely convergent, and a minor extension of the previous
argument is sufficient to show that the series (3.26) and (3.30) defining φs and φa are
absolutely and uniformly convergent.

In the course of the paper the identities (3.28) and (3.32) were derived which
together imply

∞∑
n=−2

[Y ′
n(0)]2

Cn

= 0, (A 4)

∞∑
n=−2

k2
n[Y

′
n(0)]2

Cn

= β−1. (A 5)

Also, in § 2, the continuity of Sφt from (2.6) at x = 0 enabled us to assert in (2.26)
that Sφs = 0 at x = 0. This would imply, from (3.26) that

∞∑
n=−2

(
νl2 + k2

n

)(
ν1l

2 + k2
n

)
[Y ′

n(0)]2

Cn

= 0, (A 6)

which is consistent with (A 4) and (A 5) if

∞∑
n=−2

k4
n[Y

′
n(0)]2

Cn

= −2l2β−1, (A 7)

since ν + ν1 = 2.
Satisfaction of (A 6) also shows that Bφa = 0 at x = 0 as asserted after (2.24) as a

result of the continuity of Bφt = 0 from (2.5).
We now prove the identities (A 4), (A 5) and (A 7). First note that all three series

are absolutely convergent.
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Now
∞∑

n=−2

[Y ′
n(0)]2

Cn

= 2

∞∑
n=−2

knγn sinh γnh

K ′(kn)

from (3.10).
Consider the integral

I1 =
1

2πi

∮
αγ sinh γ h

K(α)
dα,

where the contour is a circle, centre the origin of radius R.
The integrand is O(α−3) on R as R → ∞ so that I1 → 0 as R → ∞. Also, since the

integrand is odd in α, the contributions from the poles of K(α) at α = kn pair with
those from α = −kn and we find that

I1 =

∞∑
n=−2

knγn sinh γnh

K ′(kn)
= 0,

which proves (A 4).
Next consider

I2 =
1

2πi

∮ (
βα3γ sinh γ h

K(α)
− 1

α

)
dα.

Again the integrand is O(α−3) on R as R → ∞ and is odd, so that

I2 = 2

∞∑
n=−2

βk3
nγn sinh γnh

K ′(kn)
− 1 = β

∞∑
n=−2

k2
n[Y

′
n(0)]2

Cn

− 1 = 0

and (A 5) is proved.
Finally consider

I3 =
1

2πi

∮ (
βα5γ sinh γ h

K(α)
− α +

2l2

α

)
dα,

where once more the integrand is O(α−3) on R as R → ∞ and is odd in α. Thus, as
before,

I3 = 2

∞∑
n=−2

βk5
nγn sinh γnh

K ′(kn)
+ 2l2 = β

∞∑
n=−2

k4
n[Y

′
n(0)]2

Cn

+ 2l2 = 0

and (A 7) is proved. The conditions (2.19) are applied both in the course of the Green’s
function construction of the solution in arriving at (3.16) and in the eigenfunction
construction in deriving (4.3). However it is not obvious that conditions (2.19) are
indeed satisfied by the solutions (3.26) and (3.30), which requires

∞∑
n=−2

(
ν1l

2 + k2
n

)
Y ′

n(0)

Cn

Yn(y) = 2

∞∑
n=−2

kn

(
ν1l

2 + k2
n

)
K ′(kn)

cosh γn(y + h) = 0.

This follows from consideration of the integral

I4 =
1

2πi

∮
(ν1l

2 + α2)α cosh γ (y + h)

K(α)
dα,

where as before, the contour is a circle, centre the origin of radius R and where
again the integrand is O(α−3) on R as R → ∞ and is odd in α. Thus, using familiar
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arguments,

I4 = 2

∞∑
n=−2

kn

(
ν1l

2 + k2
n

)
K ′(kn)

cosh γn(y + h) = 0

as required.
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